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Principal Loop Bundles: Toward Nonassociative
Gauge Theories
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Received November 15, 1999; revised December 12, 1999

We introduce a nonassociative gauge field theory with nonassociative symmetries.
The approach is based on the nonassociative generalization of principal
bundles theory.

1. PRELIMINARIES

Difficulties in unifying all interactions prompt us to look for a mathemati-
cal structure beyond groups. The quantum group approach is a construction
of this type where the Lie group symmetry is replaced by a quantum group
symmetry and the latter reduces to the standard one in some limit (–Durd-evich,
1996, 1997, 2000). Another possibility is a nonassociative generalization of
a Lie group, such as quasigroups and smooth loops.

We developed gauge theories based on a nonassociative generalization
of principal bundles theory (Nesterov, 1989, 1999, 2000; Nesterov and Stepa-
nenko, 1986). The algebraic theory of quasigroups and loops may be found
in Belousov (1967), Bruck (1971), Pflugfelder (1990), Chein et al. (1990),
and Sabinin (1999).

Let ^Q, ?& be a groupoid with a binary operation (a, b) ° a ? b. A
groupoid ^Q, ?& is called a quasigroup if equations a ? x 5 b and y ? a 5 b
have unique solutions: x 5 a \b, y 5 b/a. A loop is a quasigroup with a two-
sided identity a ? e 5 e ? a 5 a, ∀a P Q. A loop ^Q, ?, e& that is also a
differential manifold and an operation f(a, b) :5 a ? b is a smooth map is
called a smooth loop. We define
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Physics, Siberian Branch Russian Academy of Sciences, Akademgorodok, 6600 36, Krasnoy-
arsk, Russia; e-mail: nesterov@udgserv.cencar.udg.mx

339
0020-7748/01/0100-0339$19.50/0 q 2001 Plenum Publishing Corporation



340 Nesterov

Lab 5 Rba 5 a ? b, l(a,b) 5 L21
a?b + La + Lb , l̂(a,b) 5 La?b + l(a,b) + L21

a?b

(1)

where La is a left translation, Rb is a right translation, l(a,b) is a left associator,
and l̂(a,b) is an adjoint associator,

l̂(a,b) 5 La + Lb + L21
a?b

The operation a ? b need not be associative, a ? (b ? c) Þ (a ? b) ? c,
but there exists quasiassociativity:

(a) The left identity of quasiassociativity

a ? (b ? c) 5 (a ? b) ? l(a,b)c

where l(a,b) is the (left) associator defined above.
(b) The right identity of quasiassociativity

r(b,c) a ? (b ? c) 5 (a ? b) ? c

where r(b,c) 5 R21
(b,c) + Rc + Rb is the right associator.

Let Te(Q) be the tangent space of Q at the neutral element e. Then for
each Xe P Te(Q), we construct a smooth vector field on Q

Xb 5 Lb*Xe , b P Q, Xe P Te(Q), Xb P Tb(Q)

where Lb*: Te(Q) ° Tb(Q) denotes the differential of the left translation. Note
that Xb satisfies

La*Xb 5 l̂(a,b)*Xa?b, ∀a, b P Q

Definition 1.1. A vector field X on Q which satisfies the relation La*Xb 5
l̂(a,b)*Xa?b for any a, b P Q is called a left fundamental or left quasiinvariant
vector field.

In the view of the noncommutativity of the right and left translations,
La + Rb Þ Rb + La , the definitions Adgg8 5 Lg + R21

g g8 and Ãdgg8 5 R21
g +

Lgg8 are not equivalent. We define a generalized adjoint map of Q on itself
in the following way.

Definition 1.2. A map

Adb(a) 5 L21
a + R21

b + La?b: Q ° Q (2)

is called an Ad-map.

Remark 1.1. Adb(e) 5 R21
b + Lb.

The Ad-map (2) generates the map
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Adb(a) :5 (Adb(a))* 5 L21
a* R21

b* La?b*: Te(Q) ° Te(Q)

Definition 1.3. A vector-valued 1-form v is said to be canonical Ad-
form if is defined ∀a P Q through the relation

v(Va) 5 Ve, Ve 5 L21
a* Va, Ve P Te(Q), Va P Ta(Q)

and V P T(Q) is a left fundamental vector field.

Theorem 1.1 (Nesterov, 1989, 1999). The canonical form v is a left
fundamental form and it is transformed under left (right) translations as

(L*b v)Va 5 l(b,a)*v(Va), (R*b v)Va 5 Ad21
b (a)v(Va)

2. PRINCIPAL LOOP BUNDLES

Let M be a manifold and ^Q, ?, e& a smooth two-sided loop. A principal
loop Q-bundle (a principal bundle with the structure loop Q) is a triple (P,
p, M ), where P is a manifold and the following conditions hold:

1. Q acts freely on P by the right map: ( p, a) P P 3 Q ° R̃a p [ pa
P P.

2. M is the quotient space of P by the equivalence relation induced
by Q, M 5 P/Q, and the canonical projection p: P → M is a smooth
map onto.

3. P is locally trivial, that is, for each x P M, there exists an open
neighborhood U and a diffeomorphism F: p21(U ) ° U 3 Q such
that for any point u P p21(U ), it has the form F(u) 5 (p(u), w(u)),
where w is the map from p21(U ) to Q satisfying w(R̃a p) 5 Raw( p).

We say P is a total space or bundle space, Q is a structure loop, M is
a base or base space, and p is a projection. For any x P M, the inverse
image p21(x) is the Fx fiber over x. Any fiber is diffeomorphic to Q and the
loop Q acts transitively on each fiber, satisfying the right identity
quasiassociativity

R̃a?b p 5 R̃a + R̃br̃(a, b)p, w(r̃(a,b) p) 5 r(a,b)w( p)

Let us consider a covering {Ua} of M, which can be chosen in such a
way that the restriction of the fibration to each open set Ua is trivializable.
This implies that there exists a diffeomorphism Fa: p21(Ua) ° Ua 3 Q.
The set {Ua, Fa} is called a local trivialization.

Proposition 2.1 (Nesterov, 1999). The right map on the fiber does not
depend on the trivialization: F21

a (p( p), wa(R̃q p)) 5 F21
b (p( p), wb(R̃q p)).
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Definition 2.1. The family of maps {qba( p) 5 R21
qa qb: p21(Ua ù Ub) °

Q}, where qa :5 wa( p), qb :5 wb( p), p P p21(Ua ù Ub), is called the family
of transition functions of the bundle P(M, Q) corresponding to the covering
{Ua} on M.

Proposition 2.2. Transition functions qba( p) change under right transla-
tions as

Raqba( p) 5 r(a, qa)qba( p)

where r(a, qa) is the right associator.

Definition 2.2. Let {Ua, Fa} be the local trivialization and e P Q a
neutral element; then sa 5 F21

a (x, e), x P Ua, is called the local section
associated with this trivialization.

Let u P P; then one can describe the local section as follows: sa 5
R̃21

qa(u)u, where by definition, qa(u) 5 wa(u).

Proposition 2.3. The section sa does not depend on the choice of the
point in the fiber.

Proof. Let u, p P P and u 5 R̃qa(u)sa, p 5 R̃qa(p)s8a. There exists an
element a P Q such that p 5 R̃au. Then we have

Fa(R̃qa(p)s8a) 5 Fa( p) 5 Fa(R̃au) 5 Fa(R̃a + R̃qa(u)sa)

5 (p( p), Ra + Rqa(u)wa(sa)) 5 (p( p), Ra + Rqa(u)e)

5 Fa(R̃qa(u)?asa)

Taking into account qa(p) 5 qa(u) ? a, we obtain Rqa(p)s8a 5 Rqa(p)sa. This
gives sa 5 s8a and, hence, the section sa does not depend on the point of
the fiber, while the dependence on the base, sa 5 sa(x), holds. n

Proposition 2.4. Let the point x lie in the intersection of the neighbor-
hoods Ua and Ub, x P Ua ù Ub; then the following formula holds:

sa(x) 5 R̃qbasb(x) (3)

Proof. Let u 5 R̃qasa; rewriting this formula in the chart Ub, we obtain

Fb(R̃qasa) 5 Fb(R̃qbsb) 5 (p(u), Rqbwb(sb)) 5 (p(u), Rqba?qawb(sb))

5 (p(u), Rqa + Rqbae)

5 (p(u), Rqa + Rqbawb(sb)) 5 Fb(R̃qa + R̃qbasb)

where the relation wb(sb) 5 e has been used. Finally, we obtain sa(x) 5
R̃qbasb(x) in the intersection Ua ù Ub. n
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Example 2.1. Principal QU(1) bundle over S 2. We define a smooth loop
QU(1) as a loop of multiplication by unimodular complex numbers, with
elements eia, 0 # a , 2p, and operation

eia ∗ eib 5 ei(a1̇b) (4)

where a 1̇ b 5 a 1 b 1 F(a, b), and F(a, b) is a smooth function such
that F(a, b) 5 F(b, a), F(a, 0) 5 F(0, b) 5 0. Keeping in mind only the
nonassociative case of the operation (4), we assume further that F(a, b) 1
F(a 1̇ b, g) Þ F(b, g) 1 F(a, b 1̇ g).

We construct the bundle by taking

Base M 5 S 2 with coordinates 0 # u , p, 0 # w , 2p

Fiber QU(1) 5 S1 with coordinates eia

We break S 2 into two hemispheres H6 with H+ ù H2 being a thin strip
parametrized by the equatorial angle w. Locally the bundle looks like

H2 3 QU(1) with coordinates (u, w, eia2)

H+ 3 QU(1) with coordinates (u, w, eia1)

In p21 (H2 ù H+) the elements eia1 and eia2 must be related by the transition
function eig:

eia1 5 eig ∗ eia2 5 ei(g1̇a2)

This implies

a+ 5 a2 1 g 1 F(g, a2)

Taking into account that the resulting structure must be a manifold, we find that

g 1 F(g, a2) 5 nw (5)

where n must be integer.

Comment 2.1. The structure of the obtained manifold P is unknown.

3. CONNECTION, CURVATURE, AND BIANCHI IDENTITIES

Let P(M, Q) be the principal loop Q-bundle over the manifold M. For
any u P P a tangent space at u, we denote as Tu(P) (or simply Tu) and the
tangent to the fiber passing through u as 9u. We call 9u a vertical subspace.
It is generated by the right translations on the fiber: u ° R̃au, a P Q, u P P:

Xu 5
d
dt

R̃a(t)u.t50, Xu P 9u , a P Q, u P P (6)

The basic idea of connection is to compare the points in the “neighboring”
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fibers in a way that is not dependent on a local trivialization. Let g(t) P M
be a smooth curve. A horizontal lift of g is a curve g̃(t) P P such that p(g̃(t))
5 g(t). Evidently, for determining g̃(t), it is suffucient to define at any point
of it a tangent vector X̃: p*X̃ 5 X, where X is the tangent vector to g(t). A
set {X̃} is called a horizontal subspace *u.

Definition 3.1. A connection form on a principal Q-bundle is a vector-
valued 1-form taking values at Te(Q), which satisfies:

(i) v(Xp) 5 Xe , where Xp P 9p , Xe P Te(Q) are determined according
to (7), (8).

(ii) (R̃*a v) Xp 5 Ad21
a (q)v(Xp), where q 5 w( p).

(iii) The horizontal subspace *p is defined as a kernel of v:

*p 5 {Xp P Tp(P): v(Xp) 5 0}

This definition implies that a connection in Q-bundle is determined by
the left canonical Ad-form. The connection allows us to decompose any
vector Z P Tp(P) in the form Z 5 X 1 Y, where X 5 horZ P *p is the
horizontal component of the vector Z and Y 5 verZ P 9p is the vertical one.
The map w induces the map of the vertical subspace 9p onto the tangent
space to Q, 9p →

w* Tq(Q), q 5 w( p):

Vp 5
d
dt

R̃a(t) p.t50 →
w* V̂q 5

d
dt

Ra(t)q.t50 (7)

Note that the vector field V̂q is left quasiinvariant. Indeed, it can be written
as V̂q 5 (Lq)*Ve , where

Ve 5
da(t)

dt Z
t50

P Te(Q) (8)

Definition 3.2. Let Ve P Te(Q). The vector field Vp P 9p connecting
with Ve by means of (7), (8) is called a fundamental vector field.

With the given connection form, a local 1-form taking values in Te(Q)
can be associated as follows. Let s: U , M ° s(U ) , P, p + s 5 id, be
a local section of a Q-bundle Q ° P ° M which is equipped with a connection
1-form v. Define the local s-representative of v to be the vector-valued 1-
form [taking values a Te(Q)] vU on the open set U , M given by vU :5 s*v.

Theorem 3.1. (On reconstruction of the connection form). For a given
canonical 1-form ṽ defined on U , M with values in Te(Q) and the section
s: U ° p21(U ), there exists one and only one connection 1-form v on
p21(U ) such that s*v 5 ṽ.
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Proof. Let p0 5 s(x) and Z P Tp0
(P). We have Z 5 X1 1 X2, where

X1 :5 (s* + p*)Z and X2 P 9p0
, p*X2 5 0. Define at p0 the 1-form v to be

the vector-valued 1-form given by vp0
5 ṽx(p*X ) 1 X̂2. Continuation of the

1-form v onto all points of the fiber is realized by means of right translations,
namely, ∀p P P, ∃a P Q: p 5 R̃ap0. This implies

vp((R̃a)*X ) 5 Ad21
a (q0)vp0

(X ), q0 5 w( p0)

It is easy to see that the obtained 1-form satisfies all conditions of Defini-
tion 3.1. n

Let {Ua, Fa} be a local trivialization and let Id: Ua ° Ua 3 Q by x °
(x, e). A trivialization Fa defines a canonical section sa by the equation

sa 5 F21
a + Id

and vice versa. We denote by vC a canonical Ad-form.

Definition 3.3. Let va 5 s*av, where v is the connection form. The
form va on Ua is called the connection form in the local trivialization
{Ua, Fa}.

Theorem 3.2. At Ua ù Ub, local connection forms va and vb, correspond-
ing to the same connection v on P, are related by

vb 5 Ad21
q
ab

(qba)va 1 l(q
ba

,q
ab

)*uab (9)

where qab are transition functions, and uab 5 q*abvC denotes the pullback on
Ua ù Ub of the canonical 1-form vC on Q. Vice versa, for any set of the
local forms {va} satisfying (9), there exists the unique connection form v
on P generating this family of the local forms, namely, va 5 s*av, ∀a.

Proof. 1. The direct theorem. Let x P Ua ù Ub. Applying (3), we obtain
sb(x) 5 R̃q

ab
sa(x), ∀x P Ua ù Ub. The map (sb(x))* transforms any vector

X P Tx(Ua ù Ub) into (sb)*X P Tsb(x)(P). Using the Leibniz formula (Kobay-
ashi and Nomizu, 1963, Ch. I), we get

(sb)* 5 (R̃q
ab

)*(sa)* 1 (Lq
ba

)*(qab)*

where qba :5 wb(sa). Applying v to both sides of this relation, we find

vb(X ) :5 v((sb)*X ) 5 v((R̃q
ab

)*(sa)*X ) 1 v((Lq
ba

)*(qab)*X )

5 Ad21
q
ab

(qba)va(X ) 1 l(q
ba

,q
ab

(*(q*abvC)(X )

5 Ad21
q
ab

(qba)va(X ) 1 l(q
ba

,q
ab

)*uabvC(X )

2. The inverse theorem. Let us define the 1-form ṽ as follows:
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ṽ 5 Ad21
qa (e)(p*va) 1 q*avC , qa :5 wa( p) (10)

Let X P Tu(P) be an arbitrary vector and u 5 sa(p(x)). Decompose X into
horizontal Y and vertical Z components:

X 5 Y 1 Z, Y 5 (sa)*(p*X ), p*Z 5 0

This implies

ṽ(X ) 5 Ad21
qa (e)va(p*X ) 1 (q*avC)(X )

5 Ad21
qa (e)v((sa)*p*X ) 1 vC((qa)*X )

5(R̃*qas*a)v(p*Y ) 1 vC((qa)*Z )

5 v((sa)*p*Y ) 1 vC((qa)*Z )

5 v(Y ) 1 Ẑ 5 v(Y ) 1 v(Z ) 5 v(X )

and one sees that ṽ 5 v at any point of the section sa. So these forms are
transformed in the same way under the right translations and therefore coin-
cide on p21(U ). n

Corollary 3.1. For arbitrary sections s1 and s2 such that s2 5 Rqs1 and
v1 5 s*1 v, v2 5 s*2 v, the following relation holds:

v2 5 Ad21
q (q1)v1 1 l(q1,q))*(q*vC)

where q1 :5 w(s1).

Remark 3.1. The local form s*v is called a gauge potential 1-form in
the physics literature.

3.1. Covariant Derivative. Curvature Form

Let {xm, yi} be a local coordinate system in the neighborhood p21(Ua);
xm are coordinates in Ua P M and yi are coordinates in the fiber. Locally
p21(Ua) can be presented as a direct production Ua 3 Q. The connection
form can written in the form v 5 viLi , with {Li} being the basis of left
fundamental fields and {vi} the basis of 1-forms. Taking into account (10),
we find that in the coordinates {xm, yi},

vi 5 (Ad21
y (e))i

jAj
m(x) dxm 1 vi

j( y) dy j (11)

where Ai
m(x) dxm 5 p*(vi) and vi

j( y) dy j 5 (L21
* )i

j dy j.

Definition 3.4. A covariant derivative Dm in the principal Q-bundle is
defined as follows:
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Dm 5 m 2 Ai
m(x)Li

where the Li 5 (R*) j
i/y j are generators of the left translations (right quasiin-

variant vector fields).

Comment 3.1. It is easy to show that v(Dm) 5 0. Indeed, (11) implies

v(Dm) 5 [(Ad21
y (e))i

jAj
m(x) 2 vi

pAj
m(R*)p

j ]Li

Noting that vi
p 5 (L21

* )i
p, we obtain vi

p(R*)p
j 5 (Ad21

y (e))i
j, and hence

v(Dm) 5 0.
Let us compute the commutator [Dm, Dn]:

[Dm, Dn] 5 (nAi
m 2 mAi

n)Li 1 Ai
mAj

n[Li , Lj]

Introducing [Li , Lj] 5 Cp
ij( y)Lp, we get

[Dm, Dn] 5 2F i
mnLi , F i

mn :5 mAi
n 2 nAi

m 2 Aj
mAp

nCi
jp

Definition 3.5. Let C be a vector-valued r-form in the principal Q-
bundle. An (r 1 1)-form DC defined by

DC(X1, X2, . . . , Xr11) 5 dC(horX1, . . . , horXr11)

is called a covariant differential of the form C.

Definition 3.6. A vector-valued 2-form V(X, Y ) defined as

V(X, Y ) 5 Dv(X, Y ) 5 dv(horX, horY )

where v is a connection form, is called a curvature form.

Lemma. 3.1. Let X, Y be horizontal fields; then the following relation
holds:

v([X, Y ]) 5 22V(X, Y )

Proof. Applying the exterior differentiation to 1-form v, we obtain

2dv(X, Y ) 5 Xv(Y ) 2 Yv(X ) 2 v([X, Y ])

As X, Y P *p , then v(X ) 5 v(Y ) 5 0. This implies v([X, Y ]) 5
22V(X, Y ). n

Corollary 3.2. The curvature form can be defined as

V(X, Y ) 5 21–2 v([horY, horY])

where X, Y are any continuations of the vectors X, Y P Tp(P), respectively.

Corollary 3.3. The two-form V is an Ad-form and is transformed under
the right translations as
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(R̃*a V)(X, Y ) 5 Ad21
a (q)V.p(X, Y ), where q 5 w( p)

Theorem 3.3. The curvature form V satisfies the structure equation

V 5 dv 1 v ∧ v (12)

Proof. To prove (12), one needs to consider all possible pairs X, Y. The
same idea is used in the usual fiber bundle theory for proving that the
curvature satisfies the structure equation (Kobayashi and Nomizu, 1963). n

Comment 3.2. Choosing the family of the local sections sa associated
with the trivialization Ua, Fa, and taking into account that wa(sa) 5 e, where
wa is the restriction of Fa on p21(Ua), we obtain

p*V.a 5
1
2

Fmn dxm ∧ dxn

where Fmn 5 F i
mnL̂j is introduced. Since V is an Ad-form, the following

transformation law holds:

V.b 5 Ad21
qab(qba)V.a

Theorem 3.4. Bianchi identity: DV 5 0.

Proof. It is sufficient to show that dV(X, Y, Z ) 5 0 if X, Y, Z are horizontal
vector fields. Applying the exterior derivative to (12), we obtain dV(X, Y,
Z ) 5 0 if X, Y, Z are horizontal vector fields. n

4. NONASSOCIATIVE GAUGE THEORY ON A PRINCIPAL
LOOP Q-BUNDLE

Field theory is formulated as living not on spacetime M, but on the
principal loop Q-bundle P. Choosing a natural coordinate system (x, q) on
P, where x P M and q P Q, the Lagrangian +g of the free gauge field is
as follows:

+g 5 21–4 ^Fmn, Fmn&

where ^ , & denotes the Ad-invariant scalar product on Q.
Fields are functions on P. With C(x) P M, we relate a function C̃(x, q)

[lift of the function C(x)] on the principal Q-bundle in the following way.
We assume that C̃(x, q) transforms under a finite gauge transformation U(q)
of nonassociative representations of the loop Q (Nesterov and Stepanenko,
1986; Nesterov, 1989) according to the inverse rule

C̃(x, q8 ? q) 5 U(q21)C̃(x, q8), q P Q

Then the lift C̃(x, q) of the function C(x, q) is defined as follows:
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C̃(x, q) 5 U(q21)C̃(x, e)

where C̃(x, e) :5 C(x), and e P Q is a neutral element.
The map of the element of quasialgebra X P q is defined by

XC̃(x, q) 5
d
dt

C̃(x, q ? e2tX).t50

where e2tX is an exponential mapping on Q. This implies that the covariant
derivative D̃m is given by

D̃C̃ 5 (m 1 Ãm(x, q))C̃ dxm 5 D̃mC̃ dxm

where we set Ãm 5 U(q)*.q5eAd21
q (e)Am(x). The nonassociative gauge-invari-

ant Lagrangian of matter has the structure

+m 5 +(C̃, D̃m C̃, x)

and describes a matter field C minimally coupling with the gauge field Am.

ACKNOWLEDGMENTS

I am grateful to Lev Vasilievich Sabinin and Zbigniew Oziewicz for
helpful discussions and comments.

REFERENCES

Belousov, V. D. (1967). Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow.
Chein, O., Pflugfelder, H., and J. D. H. Smith, Editors (1990). Quasigroups and Loops: Theory

and Applications, Heldermann Verlag, Berlin.
–Durd-evich, Micho (1996). Geometry of quantum principal bundles, Communications in Mathe-

matical Physics, 175, 451–521.
–Durd-evich, Micho (1997). Quantum principal bundles and corresponding gauge theories, Jour-

nal of Physics A, 30, 2027–2054.
–Durd-evich, Micho (2001). Quantum spinor structures for quantum spaces, International Journal

of Theoretical Physics, 40, 115–138.
Kobayashi, S. K., and Nomizu, K. (1963). Foundations of Differential Geometry, Vol. 1.

Interscience, New York.
Kobayashi, S. K., and Nomizu, K. (1969). Foundations of Differential Geometry, Vol. 2,

Interscience, New York.
Nesterov, Alexander I. (1989). Methods of nonassociative algebra in physics, Dr. Sci. Disserta-

tion, Institute of Physics, Estonian Academy of Science, Tartu.
Nesterov, Alexander I. (2000). Principal Q-bundles, in: R. Costa, H. Cuzzo, A. Grishkov, Jr.,

and L. A. Peresi, Editors, Non Associative Algebra and Its Applications, Marcel Dekker,
New York.

Nesterov, Alexander I. (1999). Smooth loops and fibre bundles: Theory of principal loop Q-
bundles. Submitted to Letters in Mathematical Physics.



350 Nesterov

Nesterov, Alexander I., and Lev V. Sabinin (1997). Smooth loops, generalized coherent states,
and geometric phases, International Journal of Theoretical Physics, 36, 1981–1990.

Nesterov, Alexander I., and Lev V. Sabinin (1997). Smooth loops and Thomas precession,
Hadronic Journal, 20, 219–237.

Nesterov, Alexander I., and V. A. Stepanenko (1986). On methods of nonassociative algebra
in geometry and physics, L. V. Kirensky Institute of Physics, preprint 400F.

Pflugfelder, H. (1990). Quasigroups and Loops: An Introduction, Heldermann Verlag, Berlin.
Sabinin, Lev V. (1999). Smooth Quasigroups and Loops, Kluwer, Dordrecht.


