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Principal Loop Bundles: Toward Nonassociative
Gauge Theories
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We introduce a nonassoci ative gauge field theory with nonassociative symmetries.
The approach is based on the nonassociative generalization of principal
bundles theory.

1. PRELIMINARIES

Difficultiesinunifying all interactions prompt usto look for amathemati-
cal structure beyond groups. The quantum group approach is a construction
of this type where the Lie group symmetry is replaced by a quantum group
symmetry and the latter reduces to the standard onein some limit (Burdevich,
1996, 1997, 2000). Another possihility is a nonassociative generalization of
aLie group, such as quasigroups and smooth loops.

We developed gauge theories based on a nonassociative generalization
of principal bundlestheory (Nesterov, 1989, 1999, 2000; Nesterov and Stepa-
nenko, 1986). The algebraic theory of quasigroups and loops may be found
in Belousov (1967), Bruck (1971), Pflugfelder (1990), Chein et al. (1990),
and Sabinin (1999).

Let (Q, -) be a groupoid with a binary operation (a, b) — a - b. A
groupoid (Q, -) is called a quasigroup if equationsa - x =bandy-a="b
have unique solutions: x = a\b, y = b/a. A loop is a quasigroup with a two-
sided identity a-e=e-a=a Oa e Q. Aloop (Q, -, &) that isaso a
differential manifold and an operation &(a, b) := a - b is a smooth map is
called a smooth loop. We define
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Ldb=Ra=a-b, lap) = Laseo Lao Ly, laby = Lab® l@p ° Lab

1)

where L, isaleft trandation, R, isaright trandation, |, , is aleft associator,
and |, is an adjoint associator,

lap = Lao Lp© Lab

The operation a - b need not be associative, a- (b - ¢c) # (a- b) - ¢,
but there exists quasiassociativity:

(a) The left identity of quasiassociativity
a-(b-c)=(@-b)-lgyc

where |, 1 is the (left) associator defined above.
(b) The right identity of quasiassociativity

bga-(b-c)=(-b)-c
where rp = Rpg © Re © Ry is the right associator.

Let TA(Q) be the tangent space of Q at the neutral element e. Then for
each X, € T(Q), we construct a smooth vector field on Q

Xp = LpXe, beQ XeeTlQ), X e TyQ)

where L. Ty(Q) — T,(Q) denotes the differential of the left translation. Note
that X, satisfies

La*Xb = T(a‘b)*Xa.b, Oa, be Q

_ Definition 1.1. A vector field X on Q which satisfiesthe relation L X, =
lapyXap fOr any a, b € Q iscalled aleft fundamental or left quasiinvariant
vector field.

In the view of the noncommutativity of the right and left translations,
L. e Ry # Ry o Ly, the definitions Adyg’ = Lgo Ry'g’ and Adgg’ = Rg* ©
L,g’ are not equivalent. We define a generalized adjoint map of Q on itself
in the following way.

Definition 1.2. A map
Ady(@) = LateRoteLay: Q—>Q )
is called an Ad-map.

Remark 1.1. Ady(e) = Ry o L.
The Ad-map (2) generates the map
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Ady(a) := (Ady(@))- = Lz;lRt}lLa»b*: T(Q) — T(Q)

Definition 1.3. A vector-valued 1-form w is said to be canonical Ad-
form if is defined Da e Q through the relation

oM = Ve Ve = I—;*lvav Ve € T(Q), Vi e T(Q)
and V e T(Q) is aleft fundamenta vector field.

Theorem 1.1 (Nesterov, 1989, 1999). The canonica form w is a left
fundamental form and it is transformed under left (right) trandations as

LEo)Va = lparo(M),  (REw)Va = Ady H(@)o(Va)

2. PRINCIPAL LOOP BUNDLES

Let M be amanifold and (Q, -, €) a smooth two-sided loop. A principal
loop Q-bundle (a principal bundle with the structure loop Q) is a triple (P,
, M), where P is a manifold and the following conditions hold:

1. Qactsfreely on P by theright map: (p,a) e P X Q— Ryp = pa
e P.

2. M is the quotient space of P by the equivalence relation induced
by Q, M = P/Q, and the canonical projection w: P -~ M isasmooth
map onto.

3. Pislocally trivial, that is, for each x € M, there exists an open
neighborhood U and a diffeomorphism ®: w=1(U) — U X Q such
that for any point u e w %(U), it has the form ®(u) = (w(u), ¢(u)),
where ¢ is the map from = 1(U) to Q satisfying ¢(R.p) = Rup(p).

We say P is atotal space or bundle space, Q is a structure loop, M is
a base or base space, and w is a projection. For any X € M, the inverse
image 7~ Y(x) is the F, fiber over x. Any fiber is diffeomorphic to Q and the
loop Q acts transitively on each fiber, satisfying the right identity
guasiassociativity

RuoP = RieRi(@ b)p,  ¢(FarP) = ane(p)

Let us consider a covering {U,} of M, which can be chosen in such a

way that the restriction of the fibration to each open set U, is trivializable.

This implies that there exists a diffeomorphism ®,: =~4U,) — U, X Q.
The set {U,, ®,} is caled alocal trivialization.

Proposition 2.1 (Nesterov, 1999). The right map on the fiber does not
depend on the trivialization: ®;(w(p), ea(RyP)) = Pg(w(p), a(RyP))-
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Definition 2.1. The family of maps {gg.(p) = Ry *dp: ™ (U, N Up) —
Q}, whereq, := ¢.(p), O := ¢p(p), p € XU, N Up), iscalled the family
of transition functions of the bundle P(M, Q) corresponding to the covering
{U,} on M.

Proposition 2.2. Transition functions g, (p) change under right transla-
tions as

Rancx( p) = r(a’ qu)qBa( p)
where r(a, q,) is the right associator.

Definition 2.2. Let {U,, ®,} be the locd trividization and e € Q a
neutral element; then o, = ®.(x, €), x € U,, is called the local section
associated with this trivialization.

Let u € P; then one can describe the local section as follows. o, =
Ry fwu, Where by definition, g,(u) = ¢,(u).

Proposition 2.3. The section o, does not depend on the choice of the
point in the fiber.

Proof. Let u, p € P and u = Ry, 0w P = Rypoi. There exists an
element a € Q such that p = R,u. Then we have

(I)oi(r?qa(p)o-c,x) = (I)ot( p) = (I)Ol(ﬁau) = q)oc(ﬁa ° f"qa(u)o'a)
= (m(p), Ra ° Ryy®a(0a)) = (m(P), Ra° Ry €)
= (I)a(ﬁqu(u)-ao-a)

Taking into account Oy = Oug * & We obtain Ry pos = Ry pTa- This
gives o, = o, and, hence, the section o, does not depend on the point of
the fiber, while the dependence on the base, o, = o,(X), holds. m

Proposition 2.4. Let the point x lie in the intersection of the neighbor-
hoods U, and Ug, X € U, N Ug; then the following formula holds:

0. = Ry, 05(%) (3)
Proof. Let u = Ry o,; rewriting this formulain the chart Ug, we obtain
Dp(Ry,70) = Pp(Regop) = (m(U), Regpp(ap)) = (m(U), Ryg,a,9p(0))
= (m(U), Ry, ° Reg.®)
= (m(U), Ry, ° Ry 96(0p)) = Dy(Re, ° Reg, o)

where the relation gg(oz) = e has been used. Finally, we obtain o,(x) =
Ryp.0p(X) in the intersection U, N Ug. =
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Example 2.1. Principal QU(1) bundle over S?. We define a smooth loop
QU(1) as a loop of multiplication by unimodular complex numbers, with
elements €%, 0 = o < 21, and operation

ge b = dl+p) 4
wherea + B = a + B + F(a, B), and F(a, B) is a smooth function such
that F(a, B) = F(B, ), F(a, 0) = F(0, B) = 0. Keeping in mind only the
nonassociative case of the operation (4), we assume further that F(«, B) +

Fla + B, v) # F(B, v) + F(a, B + ).
We construct the bundle by taking

BaseM = S with coordinates 0=0<m, 0=¢ <2m
Fiber QU(1) =S  with coordinates €~

We break S? into two hemispheres H.. with H, N H_ being a thin strip
parametrized by the equatorial angle ¢. Locally the bundle looks like

H_ X QU(1)  with coordinates (0, ¢, €*)
H, X QU(1)  with coordinates (6, ¢, €°)

In7~1(H_ N H,) the elements €*+ and €*- must be related by the transition
function €

der = gy Oge- = o)
This implies
oy =a_ + v+ F(y,a)
Takinginto account that the resulting structure must beamanifold, wefind that
v+ Fva) =ne (5)
where n must be integer.
Comment 2.1. The structure of the obtained manifold P is unknown.

3. CONNECTION, CURVATURE, AND BIANCHI IDENTITIES

Let P(M, Q) be the principal loop Q-bundle over the manifold M. For
any u € P atangent space at u, we denote as T,(P) (or simply T,) and the
tangent to the fiber passing through u asV',. We call V', a vertical subspace.
It is generated by the right translations on the fiber: u+— R, a € Q, u e P

Xu = % ﬁa(t)uhzo, Xu € OVU, ae Q, ue P (6)

The basic idea of connection is to compare the points in the “neighboring”
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fibers in a way that is not dependent on a local trivialization. Let y(t) € M
be a smooth curve. A horizontal lift of vy isacurve§(t) e P such that w(5(t))
= v(t). Evidently, for determining ¥(t), it is suffucient to define at any point
of it atangent vector X: mX = X, where X is the tangent vector to y(t). A
set { X} is called a horizontal subspace #,,.

Definition 3.1. A connection form on a principal Q-bundle is a vector-
valued 1-form taking values at Ty(Q), which satisfies:

(i) w(Xp) = Xe, Where X, € 1, Xe € T(Q) are determined according
to (7), (8).

(i) (Riw) X, = Ada* (Q)w(X,), where g = ¢(p).

(iii) The horizontal subspace ¢, is defined as a kernel of w:

¥, = {X; € Ty(P): w(X;) = O}

This definition implies that a connection in Q-bundle is determined by
the left canonical Ad-form. The connection allows us to decompose any
vector Z € Ty(P) in the foom Z = X + Y, where X = horZ € %, is the
horizontal component of the vector Zand Y = verZ e ¥ is the vertical one.
The map ¢ induces the map of the vertical subspace 71", onto the tangent

space to Q, ¥y & Ty(Q), a4 = ¢(p):

o d
v, = Vg = p Rali=o (7
Note that the vector field V, is left quasiinvariant. Indeed, it can be written
as Vg = (Lg)<Ve, where

_ da(®

Vi
€ dt |,

e T(Q (8)

Definition 3.2. Let V. € T(Q). The vector field V, € ¥, connecting
with V, by means of (7), (8) is caled a fundamental vector field.

With the given connection form, alocal 1-form taking values in T,(Q)
can be associated as follows. Let 6: U C M — o(U) C P, meo o = id, be
alocal section of aQ-bundle Q — P+— M whichisequipped with aconnection
1-form w. Define the local o-representative of o to be the vector-valued 1-
form [taking values a T(Q)] »" on the open set U C M given by " := o* .

Theorem 3.1. (On reconstruction of the connection form). For a given
canonical 1-form & defined on U C M with values in T,(Q) and the section
o: U — m}(U), there exists one and only one connection 1-form o on
w (V) such that o*w = &.
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Proof. Let pp = o(X) and Z e TpO(P). We have Z = X; + X,, where
Xi1:= (o« °om)Zand X, e °Vp0, mX; = 0. Define at p, the 1-form o to be
the vector-valued 1-form given by wp = Oy (mX) + X,. Continuation of the
1-form o onto al points of the fiber isrealized by means of right translations,
namely, Op € P, (A € Q: p = Rypo. Thisimplies

wp((R)-X) = Ada (Go)wp(X),  Go = @(Po)

It is easy to see that the obtained 1-form satisfies al conditions of Defini-
tion3.1 =m

Let {U,, ®,} bealoca trivialization and let Id: U, — U, X Q by x+—>
(%, €). A trividization @, defines a canonical section o, by the equation

0, = P 1o ld
and vice versa. We denote by wc a canonical Ad-form.

Definition 3.3. Let w, = o*w, where o is the connection form. The
form w, on U, is called the connection form in the local trivialization
{Uou (I)OL}

Theorem3.2. AtU, N Ug, local connection forms w,, and wg, correspond-
ing to the same connection w on P, are related by

(J.)B = Ada;;(qsa)wa + I(un,tu)*GaB (9)

where g, are transition functions, and 6,5 = g&zoc denotes the pullback on
U, N Ug of the canonical 1-form wc on Q. Vice versa, for any set of the
local forms {w,} satisfying (9), there exists the unique connection form w
on P generating this family of the local forms, namely, o, = o¥w, Oa.

Proof. 1. The direct theorem. Let x € U, N Ug. Applying (3), we obtain

op(X) = Ry, 04(X), Ox € U, N Ug. The map (oa(X))- transforms any vector
X e T(U, A Ug) into (0p)-X & Tyu9(P). Using the Leibniz formula (Kobay-
ashi and Nomizu, 1963, Ch. |), we get

(@6 = (Ry (@) + (Lay ) (0up):
where g, 1= ¢p(0.). Applying o to both sides of this relation, we find
wp(X) 1= o((op)-X) = w((ﬁqas)*(%)*x) + o((Lg, )+ (Gup)-X)
= Adg(Gp)0u(X) + lig,_ ¢ (@p0)X)
= Adg(Gp)0ulX) + lig,_ g, 0us0c(X)

2. The inverse theorem. Let us define the 1-form & as follows:
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& = A (T wy) + Ghoc,  Ou:= ¢u(P) (10)

Let X € Ty(P) be an arbitrary vector and u = o,(m(X)). Decompose X into
horizontal Y and vertical Z components:

X=Y+2Z Y=(o)(mX), mZ=0
This implies
B(X) = Adg©we(m:X) + (GEwc)(X)
= Adaal(e)w(((ru)*w*X) + 0c((g)+X)
(R, o%)o(m.Y) + oc((G)-Z)

w((0a)«mY) + 0c((0u)-Z)
oY) + Z = oY) + oZ) = o(X)

and one sees that ® = w at any point of the section o,. So these forms are
transformed in the same way under the right trandlations and therefore coin-
cideon m}(U). m

Corollary 3.1. For arbitrary sections o, and o, such that o, = Ryo; and
w; = ofw, w, = 3w, the following relation holds:

wp = Adg H(A)w; + ligy.qy(0* wc)
where g; := ¢(01).
Remark 3.1. The local form o*w is called a gauge potential 1-formin
the physics literature.
3.1. Covariant Derivative. Curvature Form

Let {x*, y'} be alocal coordinate system in the neighborhood =~ (U,);
x* are coordinates in U, € M and y' are coordinates in the fiber. Locally
7~ 1(U,) can be presented as a direct production U, X Q. The connection
form can written in the form w = o'L;, with {L;} being the basis of left
fundamental fields and {w'} the basis of 1-forms. Taking into account (10),
we find that in the coordinates {x*, y'},

o' = (Ad,()IAL(X) dx* + wii(y) dy! (1D
where Al (x) dx* = 7* (') and w'j(y) dy! = (L] dy’.

Definition 3.4. A covariant derivative D, in the principal Q-bundle is
defined as follows:
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DlJL = au — AL(X)E,

wherethe; = (R.)!a/0y! are generators of the left translations (right quasiin-
variant vector fields).

Comment 3.1. It is easy to show that w(D,) = 0. Indeed, (11) implies
o(D,) = [(Ad; H(E)A.(X) — o' ALR)IL;

Noting that o', = (L%, we obtain o',(R)P = (Ady*(e)),, and hence
o(D,) =0.
Let us compute the commutator [D,,, D,]:

[Dpu Dv] = (aVAIp, - a}LNI))EI + AI}LNI)[E| ’ EJ]
Introducing [L;, L] = CR(y)L,, we get
[D., D] = —Fi,L, Fil, = d,A, — 3,A, — ALAC,

Definition 3.5. Let ¥ be a vector-vaued r-form in the principal Q-
bundle. An (r + 1)-form DW defined by

DW(Xy, X5, ...y Xpp1) = dW(horXy, ..., horX )
is called a covariant differential of the form V.
Definition 3.6. A vector-valued 2-form Q(X, Y) defined as
Q0K Y) = Do(X, Y) = dw(horX, horY)
where  is a connection form, is called a curvature form.

Lemma. 3.1. Let X, Y be horizontal fields; then the following relation
holds:

o([X, Y]) = —2Q(X,Y)
Proof. Applying the exterior differentiation to 1-form w, we obtain
2dw(X, Y) = Xo(Y) — Yo(X) — o([X, Y])

As X, Y e ¥, then w(X) = w(Y) = 0. This implies o([X, Y]) =
-20(X,Y). =m

Corollary 3.2. The curvature form can be defined as
Q(X, Y) = —$w([horY, horY])
where X, Y are any continuations of the vectors X, Y e Ty(P), respectively.

Corollary 3.3. The two-form () is an Ad-form and is transformed under
the right trandations as
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(REQ)(X, Y) = AdaH(@Qy(X, Y),  where q = ¢(p)
Theorem 3.3. The curvature form () satisfies the structure equation
Q=do +oldn (12

Proof. To prove (12), one needs to consider all possible pairs X, Y. The
same idea is used in the usual fiber bundle theory for proving that the
curvature satisfies the structure equation (Kobayashi and Nomizu, 1963). =

Comment 3.2. Choosing the family of the local sections o, associated
with the trivialization U, ®,, and taking into account that ¢.(o,) = €, where
¢, is the restriction of ®, on ©~}U,), we obtain

w*Ql, = % F . dx* O dx

where F,, = Fi,,[; is introduced. Since Q is an Ad-form, the following
transformation law holds:

Qg = Adg (Al
Theorem 3.4. Bianchi identity: D) = 0.

Proof. It issufficient to show that dQ)(X, Y, Z) = 0if X, Y, Zare horizontal
vector fields. Applying the exterior derivative to (12), we abtain dQ(X, Y,
Z) = 0if X, Y, Z are horizontal vector fields. =

4. NONASSOCIATIVE GAUGE THEORY ON A PRINCIPAL
LOOP Q-BUNDLE

Field theory is formulated as living not on spacetime M, but on the
principal loop Q-bundle P. Choosing a natural coordinate system (x, ) on
P, where x e M and q € Q, the Lagrangian &£, of the free gauge field is
as follows:

Py = —L(F,,, F#)

where ( , ) denotes the Ad-invariant scalar product on Q. .

Fields are functions on P. With ¥(x) € M, we relate afunction W(x, q)
[lift of the function W(x)] on the principal Q-bundle in the following way.
We assume that W(x, g) transforms under a finite gauge transformation U(q)
of nonassociative representations of the loop Q (Nesterov and Stepanenko,
1986; Nesterov, 1989) according to the inverse rule

Yx g -9 =U@a)¥xa), dgeQ
Then the lift ¥(x, q) of the function ¥(x, q) is defined as follows:

wvr
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P(x, q) = U@ H)¥(x e
where ¥(x, €) := ¥(X), and e € Q is a neutral element.
The map of the element of quasialgebra X e g is defined by
- d -~
XW(x, ) = 5 V(x q- el
where e is an exponential mapping on Q. This implies that the covariant
derivative D, is given by
DY = (0, + A, (x, )P dx+ = D, dx*

where we set AM = U(Q)+|q-eAdq Y(€)A,.(X). The nonassociative gauge-invari-
ant Lagrangian of matter has the structure

P =¥, D, P, %
and describes a matter field W minimally coupling with the gauge field A,.
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